
Creating and
Processing OMR
Forms with
LEADTOOLS

Forms recognition and processing is used all over the world to tackle a
wide variety of tasks including classification, document archival, optical
character recognition and optical mark recognition. Out of those general
categories, OMR is an oft misunderstood and underused feature in
document imaging due to the time required to set up OMR based forms
and the difficulty of accurately detecting which OMR fields are filled on a
scanned document. Creating and processing OMR forms can be a
time-consuming nightmare and this white paper will discuss how to
alleviate those issues through automated detection, classification and
processing.

Most forms contain a small number of OMR fields to capture information
such as gender and marital status. These cause little to no difficulties
because there are very few fields to deal with. On the other hand,
creating and processing forms dominated by multiple choice questions is
noticeably more difficult due to the sheer volume of fields that can be
packed into a page. Additionally, the small size of check boxes, bubbles
and other types of OMR fields creates potential hypersensitivity resulting
in more false negatives or positives.

Below we will examine in more detail how to alleviate both of these
common problems by developing an OMR forms recognition application
with LEADTOOLS. This award-winning imaging SDK contains all the
tools necessary to combine time-saving and programmer friendly APIs
with state of the art recognition accuracy and speed for an unmatched
level of quality in your final solution.

Introduction

The first step in a forms recognition application is to build the master
forms. These master forms, or blank form templates, serve two primary
purposes. First, it is used to identify what type of form a scanned
document is. Second, the fields indicate the areas on the form from which
data will be recognized and extracted.

Using LEADTOOLS OCR to Add OMR Fields to a
Master Form

For many systems, creating an OMR based form can be a tedious
process due to the amount of repetition involved with surveys, bubble
sheets or tests. One could spend hours manually drawing each and every
OMR field around the boxes. Thankfully, LEADTOOLS is capable of
automatically detecting all of the OMR fields with its
IOcrEngine.AutoZone function. After finding each zone on the page,
you can loop through the collection and add a new OMR field for each
OMR zone.

FormPages formPages = currentMasterForm.ReadFields();

// Create OCR Engine
using (IOcrEngine ocrEngine =
 OcrEngineManager.CreateEngine(OcrEngineType.Advantage, false))
{
 ocrEngine.Startup(null, null, null, null);
 ocrEngine.SettingManager.SetEnumValue("Recognition.Zoning.Options",
 "Detect Text, Detect Graphics, Use Text Extractor, " + _
 "Detect Checkbox");

 using (IOcrDocument ocrDocument =
 ocrEngine.DocumentManager.CreateDocument())
 {
 // Auto zone
 ocrDocument.Pages.AddPages(rasterImageViewer1.Image, 1, 1, null);
 ocrDocument.Pages.AutoZone(OcrZoneParser.Leadtools,
 OcrZoneFillMethod.Omr, LogicalUnit.Pixel, 0, 0, null);

 // Add a form field for each OMR zone

 FormField newField;
 IOcrZoneCollection zones = ocrDocument.Pages[0].Zones;
 for (int i = 0; i < zones.Count; i++)
 {
 if (zones[i].FillMethod == OcrZoneFillMethod.Omr)
 {
 newField = new OmrFormField();
 newField.Bounds = zones[i].Bounds;
 newField.Name = string.Format("OMR Field {0}", i);
 formPages[oldSelectedPageIndex].Add(newField);
 }
 }
 }

 currentMasterForm.WriteFields(formPages);
}

Figure 1: Master Forms Editor after OMR Field Detection

The OCR engine’s AutoZone method is used to get the location of each
zone but there are many ways to go about naming them. This simple
example gives a base name to the zones, but one could expand on this
logic and name the zones more intelligently by checking the
FormField.Bounds property to determine which zones are in the same
row or column. Additionally, you can use the Master Forms Editor demo
or manually edit the XML file in which the field data is stored.

Most scanned document processing systems must handle more than one
type of form. A viable but inefficient solution might utilize a different
application, button or dialog for each type of form that needs processing.
This could certainly be implemented to automate the processing of data,
but is handicapped by the requirement of manually informing the
application which form template to process the scanned image with. An
optimal solution is one in which the forms can be recognized or classified
automatically and then processed based on those findings. LEADTOOLS
provides reliable and flexible Forms Recognition capabilities with a variety
of classification data including logos, dark and light areas, OCR, barcode
and more.

Using LEADTOOLS Forms Recognition and Processing

// Create an OCR Engine for each processor on the machine. This
// allows for optimal use of thread during recognition and processing.
ocrEngines = new List<IOcrEngine>();
for (int i = 0; i < Environment.ProcessorCount; i++)
{
 ocrEngines.Add(
 OcrEngineManager.CreateEngine(OcrEngineType.Advantage, false));
 ocrEngines[i].Startup(formsCodec, null, String.Empty, String.Empty);
}
// Point repository to directory with existing master forms
formsRepository = new DiskMasterFormsRepository(
 formsCodec, masterFormsFolder);
autoEngine = new AutoFormsEngine(formsRepository, ocrEngines, null,
 AutoFormsRecognitionManager.Default | AutoFormsRecognitionManager.Ocr,
 30, 80, true);

string[] formsToRecognize = Directory.GetFiles(filledFormsFolder);
progressBar1.Maximum = formsToRecognize.Length;
for (int i = 0; i < formsToRecognize.Length; i++)
{
 // Recognize (Classify) the form
 lblStatus.Text = string.Format("Recognizing form {0} of {1}",
 i + 1, formsToRecognize.Length);
 AutoFormsRunResult runResult = autoEngine.Run(formsToRecognize[i], null);
 if (runResult != null)
 {
 // Recognition was successful
 lblStatus.Text = string.Format("Processing form {0} of {1}",
 i + 1, formsToRecognize.Length);
 ProcessResults(runResult);
 }

 progressBar1.Value++;
}

Once the form is recognized successfully, the fields can be processed to
extract the OMR data from the filled out document. An important
consideration when choosing an OMR solution is how accurately it can
handle variances in fill styles. Even if strict rules are communicated to
those filling out the forms, there will still be differences in how humans fill
in the OMR fields. LEADTOOLS excels in its OMR accuracy and can
distinguish between filled and unfilled boxes regardless of fill styles. For
example, see the following screen captures of the same question from
three filled surveys.

Extracting Answers from Completed OMR Forms

Figure 2: Differences in How OMR Fields Are Filled

int nNewRowIndex = dataGridView1.Rows.Add();
foreach (FormPage formPage in runResult.FormFields)
{
 foreach (FormField field in formPage)
 {
 if (field.Result.GetType() == typeof(OmrFormFieldResult))
 {
 // Was this checkbox filled?
 if ((field.Result as OmrFormFieldResult).Text == "1")
 {
 // Get the question number and value (column number)
 // of this checkbox
 string[] strQuestionValue = field.Name.Split('-');
 dataGridView1.Rows[nNewRowIndex].Cells[string.Format("col{0}",
 strQuestionValue[0])].Value = strQuestionValue[1];
 }
 }
 }
}

If you recall Figure 1, you can see the fields were named with the question
number and column number separated by a hyphen. Armed with that
naming paradigm we can then easily determine which checkbox was filled
for each column and add it to our data source.

Conclusion

This is just one of many real world solutions you can tackle with
LEADTOOLS. Its state of the art Forms Recognition and Processing SDK
is the most flexible and powerful product in its class, and LEADTOOLS
offers an incredible value with its comprehensive family of toolkits for
raster, document, medical and multimedia imaging. For more information
on how LEAD Technologies can image-enable your application and boost
your ROI, visit www.leadtools.com to download a free evaluation, or give
us a call at +1-704-332-5532.

Naturally, there are many ways to name the fields and correlate the
answers to your data source. With a little planning at the beginning
stages of your application, you can design your OMR Forms recognition
solution around any master form and data source for a dependable,
flexible and most importantly, accurate solution using LEADTOOLS.

Figure 3: Results from Completed Surveys

SALES: (704) 332-5532
SALES@LEADTOOLS.COM

SUPPORT: (704) 372-9681
SUPPORT@LEADTOOLS.COM

LEAD TECHNOLOGIES, INC.
1927 SOUTH TRYON STREET
SUITE 200
CHARLOTTE, NC 28203

With a rich history of over twenty years, LEAD has established itself as the world's
leading provider of software development toolkits for document, medical, multimedia,
raster and vector imaging. LEAD's flagship product, LEADTOOLS, holds the top
position in every major country throughout the world and boasts a healthy, diverse
customer base and strong list of corporate partners including some of the largest and
most influential organizations from around the globe.

About LEAD Technologies

	1
	2
	3
	4
	5
	6
	7
	8

